Role of Protein Farnesylation in Burn-Induced Metabolic Derangements and Insulin Resistance in Mouse Skeletal Muscle

نویسندگان

  • Harumasa Nakazawa
  • Marina Yamada
  • Tomokazu Tanaka
  • Joshua Kramer
  • Yong-Ming Yu
  • Alan J. Fischman
  • J. A. Jeevendra Martyn
  • Ronald G. Tompkins
  • Masao Kaneki
چکیده

OBJECTIVE Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle. METHODS A full thickness burn (30% total body surface area) was produced under anesthesia in male C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP) or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene expression were evaluated. RESULTS Burn increased FTase expression and farnesylated proteins in mouse muscle compared with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt and GSK-3β was decreased. Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling), PTEN (a negative regulator of Akt-mediated signaling), protein degradation and lactate release by muscle, and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling and metabolic dysfunction were associated with increased inflammatory gene expression. These burn-induced alterations were reversed or ameliorated by FTI-277. CONCLUSIONS Our data demonstrate that burn increased FTase expression and protein farnesylation along with insulin resistance, metabolic alterations and inflammatory response in mouse skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate that increased protein farnesylation plays a pivotal role in burn-induced metabolic dysfunction and inflammatory response. Our study identifies FTase as a novel potential molecular target to reverse or ameliorate metabolic derangements in burn patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

Simultaneous Effect of Resistance Training and Stem Cell Injection on Blood Glucose Levels and Bax and Bcl2 Protein Expression from Markers of Skeletal Muscle Apoptosis in STZ-Induced Diabetic Male Rats

Background: Type 1 diabetes is a disorder caused by autoimmune destruction of pancreatic insulin-producing cells. This induction of autoimmunity may be due to genetic and environmental factors. Bax and Bcl2 proteins play an important role in the process of apoptosis. Methods: In this study, 30 male Wistar rats weighting approximately 200±20gr were randomly selected from available rats in lab ...

متن کامل

Burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle.

The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PK...

متن کامل

Simultaneous Effect of Resistance Training and Stem Cell Injection on Blood Glucose Levels, Insulin Resistance, Caspase 3 And 7 As Indicators of Skeletal Muscle Apoptosis in STZ-Induced Male Diabetic Rats

Background: The aim of the present study was to investigate the simultaneous effect of resistance training and stem cell injection on the levels of some indicators of skeletal muscle apoptosis in STZ-induced diabetic male rats. Methods: In this study, 30 rats were randomly divided into 5 groups. Rats in the diabetic group and the diabetic group + stem cell injection had a total of 17 sessions...

متن کامل

iNOS as a Driver of Inflammation and Apoptosis in Mouse Skeletal Muscle after Burn Injury: Possible Involvement of Sirt1 S-Nitrosylation-Mediated Acetylation of p65 NF-κB and p53

Inflammation and apoptosis develop in skeletal muscle after major trauma, including burn injury, and play a pivotal role in insulin resistance and muscle wasting. We and others have shown that inducible nitric oxide synthase (iNOS), a major mediator of inflammation, plays an important role in stress (e.g., burn)-induced insulin resistance. However, it remains to be determined how iNOS induces i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015